Extensions 1→N→G→Q→1 with N=C2xC10 and Q=C22xC6

Direct product G=NxQ with N=C2xC10 and Q=C22xC6
dρLabelID
C24xC30480C2^4xC30480,1213

Semidirect products G=N:Q with N=C2xC10 and Q=C22xC6
extensionφ:Q→Aut NdρLabelID
(C2xC10):(C22xC6) = C22xD5xA4φ: C22xC6/C22C6 ⊆ Aut C2xC1060(C2xC10):(C2^2xC6)480,1202
(C2xC10):2(C22xC6) = C6xD4xD5φ: C22xC6/C6C22 ⊆ Aut C2xC10120(C2xC10):2(C2^2xC6)480,1139
(C2xC10):3(C22xC6) = A4xC22xC10φ: C22xC6/C23C3 ⊆ Aut C2xC10120(C2xC10):3(C2^2xC6)480,1208
(C2xC10):4(C22xC6) = D4xC2xC30φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10):4(C2^2xC6)480,1181
(C2xC10):5(C22xC6) = C2xC6xC5:D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10):5(C2^2xC6)480,1149
(C2xC10):6(C22xC6) = D5xC23xC6φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10):6(C2^2xC6)480,1210

Non-split extensions G=N.Q with N=C2xC10 and Q=C22xC6
extensionφ:Q→Aut NdρLabelID
(C2xC10).1(C22xC6) = C6xD4:2D5φ: C22xC6/C6C22 ⊆ Aut C2xC10240(C2xC10).1(C2^2xC6)480,1140
(C2xC10).2(C22xC6) = C3xD4:6D10φ: C22xC6/C6C22 ⊆ Aut C2xC101204(C2xC10).2(C2^2xC6)480,1141
(C2xC10).3(C22xC6) = C3xD5xC4oD4φ: C22xC6/C6C22 ⊆ Aut C2xC101204(C2xC10).3(C2^2xC6)480,1145
(C2xC10).4(C22xC6) = C3xD4:8D10φ: C22xC6/C6C22 ⊆ Aut C2xC101204(C2xC10).4(C2^2xC6)480,1146
(C2xC10).5(C22xC6) = C3xD4.10D10φ: C22xC6/C6C22 ⊆ Aut C2xC102404(C2xC10).5(C2^2xC6)480,1147
(C2xC10).6(C22xC6) = C4oD4xC30φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).6(C2^2xC6)480,1183
(C2xC10).7(C22xC6) = C15x2+ 1+4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC101204(C2xC10).7(C2^2xC6)480,1184
(C2xC10).8(C22xC6) = C15x2- 1+4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC102404(C2xC10).8(C2^2xC6)480,1185
(C2xC10).9(C22xC6) = C12xDic10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).9(C2^2xC6)480,661
(C2xC10).10(C22xC6) = C3xC20:2Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).10(C2^2xC6)480,662
(C2xC10).11(C22xC6) = C3xC20.6Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).11(C2^2xC6)480,663
(C2xC10).12(C22xC6) = D5xC4xC12φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).12(C2^2xC6)480,664
(C2xC10).13(C22xC6) = C3xC42:D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).13(C2^2xC6)480,665
(C2xC10).14(C22xC6) = C12xD20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).14(C2^2xC6)480,666
(C2xC10).15(C22xC6) = C3xC20:4D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).15(C2^2xC6)480,667
(C2xC10).16(C22xC6) = C3xC4.D20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).16(C2^2xC6)480,668
(C2xC10).17(C22xC6) = C3xC42:2D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).17(C2^2xC6)480,669
(C2xC10).18(C22xC6) = C3xC23.11D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).18(C2^2xC6)480,670
(C2xC10).19(C22xC6) = C3xDic5.14D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).19(C2^2xC6)480,671
(C2xC10).20(C22xC6) = C3xC23.D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).20(C2^2xC6)480,672
(C2xC10).21(C22xC6) = C3xD5xC22:C4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10120(C2xC10).21(C2^2xC6)480,673
(C2xC10).22(C22xC6) = C3xDic5:4D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).22(C2^2xC6)480,674
(C2xC10).23(C22xC6) = C3xC22:D20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10120(C2xC10).23(C2^2xC6)480,675
(C2xC10).24(C22xC6) = C3xD10.12D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).24(C2^2xC6)480,676
(C2xC10).25(C22xC6) = C3xD10:D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).25(C2^2xC6)480,677
(C2xC10).26(C22xC6) = C3xDic5.5D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).26(C2^2xC6)480,678
(C2xC10).27(C22xC6) = C3xC22.D20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).27(C2^2xC6)480,679
(C2xC10).28(C22xC6) = C3xDic5:3Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).28(C2^2xC6)480,680
(C2xC10).29(C22xC6) = C3xC20:Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).29(C2^2xC6)480,681
(C2xC10).30(C22xC6) = C3xDic5.Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).30(C2^2xC6)480,682
(C2xC10).31(C22xC6) = C3xC4.Dic10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).31(C2^2xC6)480,683
(C2xC10).32(C22xC6) = C3xD5xC4:C4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).32(C2^2xC6)480,684
(C2xC10).33(C22xC6) = C3xC4:C4:7D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).33(C2^2xC6)480,685
(C2xC10).34(C22xC6) = C3xD20:8C4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).34(C2^2xC6)480,686
(C2xC10).35(C22xC6) = C3xD10.13D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).35(C2^2xC6)480,687
(C2xC10).36(C22xC6) = C3xC4:D20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).36(C2^2xC6)480,688
(C2xC10).37(C22xC6) = C3xD10:Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).37(C2^2xC6)480,689
(C2xC10).38(C22xC6) = C3xD10:2Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).38(C2^2xC6)480,690
(C2xC10).39(C22xC6) = C3xC4:C4:D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).39(C2^2xC6)480,691
(C2xC10).40(C22xC6) = Dic5xC2xC12φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).40(C2^2xC6)480,715
(C2xC10).41(C22xC6) = C6xC10.D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).41(C2^2xC6)480,716
(C2xC10).42(C22xC6) = C3xC20.48D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).42(C2^2xC6)480,717
(C2xC10).43(C22xC6) = C6xC4:Dic5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).43(C2^2xC6)480,718
(C2xC10).44(C22xC6) = C3xC23.21D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).44(C2^2xC6)480,719
(C2xC10).45(C22xC6) = C6xD10:C4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).45(C2^2xC6)480,720
(C2xC10).46(C22xC6) = C12xC5:D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).46(C2^2xC6)480,721
(C2xC10).47(C22xC6) = C3xC23.23D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).47(C2^2xC6)480,722
(C2xC10).48(C22xC6) = C3xC20:7D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).48(C2^2xC6)480,723
(C2xC10).49(C22xC6) = C3xD4xDic5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).49(C2^2xC6)480,727
(C2xC10).50(C22xC6) = C3xC23.18D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).50(C2^2xC6)480,728
(C2xC10).51(C22xC6) = C3xC20.17D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).51(C2^2xC6)480,729
(C2xC10).52(C22xC6) = C3xC23:D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10120(C2xC10).52(C2^2xC6)480,730
(C2xC10).53(C22xC6) = C3xC20:2D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).53(C2^2xC6)480,731
(C2xC10).54(C22xC6) = C3xDic5:D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).54(C2^2xC6)480,732
(C2xC10).55(C22xC6) = C3xC20:D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).55(C2^2xC6)480,733
(C2xC10).56(C22xC6) = C3xDic5:Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).56(C2^2xC6)480,737
(C2xC10).57(C22xC6) = C3xQ8xDic5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).57(C2^2xC6)480,738
(C2xC10).58(C22xC6) = C3xD10:3Q8φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).58(C2^2xC6)480,739
(C2xC10).59(C22xC6) = C3xC20.23D4φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).59(C2^2xC6)480,740
(C2xC10).60(C22xC6) = C6xC23.D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).60(C2^2xC6)480,745
(C2xC10).61(C22xC6) = C3xC24:2D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10120(C2xC10).61(C2^2xC6)480,746
(C2xC10).62(C22xC6) = C2xC6xDic10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).62(C2^2xC6)480,1135
(C2xC10).63(C22xC6) = D5xC22xC12φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).63(C2^2xC6)480,1136
(C2xC10).64(C22xC6) = C2xC6xD20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).64(C2^2xC6)480,1137
(C2xC10).65(C22xC6) = C6xC4oD20φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).65(C2^2xC6)480,1138
(C2xC10).66(C22xC6) = C6xQ8xD5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).66(C2^2xC6)480,1142
(C2xC10).67(C22xC6) = C6xQ8:2D5φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10240(C2xC10).67(C2^2xC6)480,1143
(C2xC10).68(C22xC6) = C3xQ8.10D10φ: C22xC6/C2xC6C2 ⊆ Aut C2xC102404(C2xC10).68(C2^2xC6)480,1144
(C2xC10).69(C22xC6) = Dic5xC22xC6φ: C22xC6/C2xC6C2 ⊆ Aut C2xC10480(C2xC10).69(C2^2xC6)480,1148
(C2xC10).70(C22xC6) = C22:C4xC30central extension (φ=1)240(C2xC10).70(C2^2xC6)480,920
(C2xC10).71(C22xC6) = C4:C4xC30central extension (φ=1)480(C2xC10).71(C2^2xC6)480,921
(C2xC10).72(C22xC6) = C15xC42:C2central extension (φ=1)240(C2xC10).72(C2^2xC6)480,922
(C2xC10).73(C22xC6) = D4xC60central extension (φ=1)240(C2xC10).73(C2^2xC6)480,923
(C2xC10).74(C22xC6) = Q8xC60central extension (φ=1)480(C2xC10).74(C2^2xC6)480,924
(C2xC10).75(C22xC6) = C15xC22wrC2central extension (φ=1)120(C2xC10).75(C2^2xC6)480,925
(C2xC10).76(C22xC6) = C15xC4:D4central extension (φ=1)240(C2xC10).76(C2^2xC6)480,926
(C2xC10).77(C22xC6) = C15xC22:Q8central extension (φ=1)240(C2xC10).77(C2^2xC6)480,927
(C2xC10).78(C22xC6) = C15xC22.D4central extension (φ=1)240(C2xC10).78(C2^2xC6)480,928
(C2xC10).79(C22xC6) = C15xC4.4D4central extension (φ=1)240(C2xC10).79(C2^2xC6)480,929
(C2xC10).80(C22xC6) = C15xC42.C2central extension (φ=1)480(C2xC10).80(C2^2xC6)480,930
(C2xC10).81(C22xC6) = C15xC42:2C2central extension (φ=1)240(C2xC10).81(C2^2xC6)480,931
(C2xC10).82(C22xC6) = C15xC4:1D4central extension (φ=1)240(C2xC10).82(C2^2xC6)480,932
(C2xC10).83(C22xC6) = C15xC4:Q8central extension (φ=1)480(C2xC10).83(C2^2xC6)480,933
(C2xC10).84(C22xC6) = Q8xC2xC30central extension (φ=1)480(C2xC10).84(C2^2xC6)480,1182

׿
x
:
Z
F
o
wr
Q
<